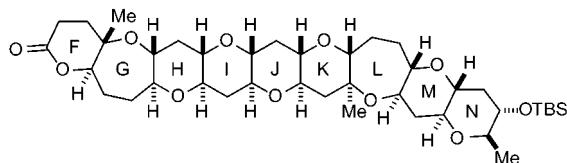


Studies toward the Total Synthesis of Gymnocin A, a Cytotoxic Polyether: A Highly Convergent Entry to the F–N Ring Fragment


Makoto Sasaki,^{*,†,‡} Chihiro Tsukano,[†] and Kazuo Tachibana[†]

Department of Chemistry, Graduate School of Science, The University of Tokyo, and CREST, Japan Science and Technology Corporation (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Laboratory of Biostructural Chemistry, Graduate School of Life Science, Tohoku University, Tsutsumidori-Amamiya, Aoba-ku, Sendai 981-8555, Japan

msasaki@bios.tohoku.ac.jp

Received March 4, 2002

ABSTRACT

An efficient and highly convergent synthesis of the FGHJKLMN ring fragment of gymnocin A, a cytotoxic polycyclic ether isolated from the notorious red-tide forming dinoflagellate *Gymnodinium mikimotoi*, has been achieved. The present synthesis relied on extensive use of the *B*-alkyl Suzuki–Miyaura coupling reaction.

Gymnocin A (**1**) was recently isolated from the notorious red-tide forming dinoflagellate *Gymnodinium mikimotoi* by Satake et al.¹ The toxin displays *in vitro* cytotoxicity against a murine P388 lymphocytic leukemia cell line ($EC_{50} = 1.3 \mu\text{g/mL}$).² The structure of gymnocin A, including the relative and absolute stereochemistry, has been determined by a combination of NMR analyses, FAB collision induced dissociation (CID) MS/MS experiments, and a modified Mosher method (Figure 1).¹ Structurally, gymnocin A consists of 14 contiguous and saturated ether rings, including two repeating 6/6/7/6/6 ring systems, and a 2-methyl-2-butenal side chain. The number of the contiguous ether rings

is the largest among the polycyclic ethers known to date.³ Given the structural complexity, intriguing biological activity, and our continuing interest in the synthesis of polycyclic ether marine toxins based on *B*-alkyl Suzuki–Miyaura coupling,^{4–6} we have been engaged in the synthesis of gymnocin A. Herein we describe a highly convergent synthesis of the FGHJKLMN ring fragment **3** that relies on extensive use of the *B*-alkyl Suzuki–Miyaura coupling-based methodology.

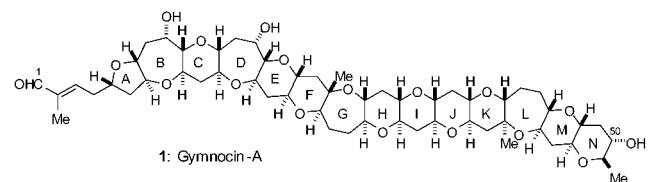
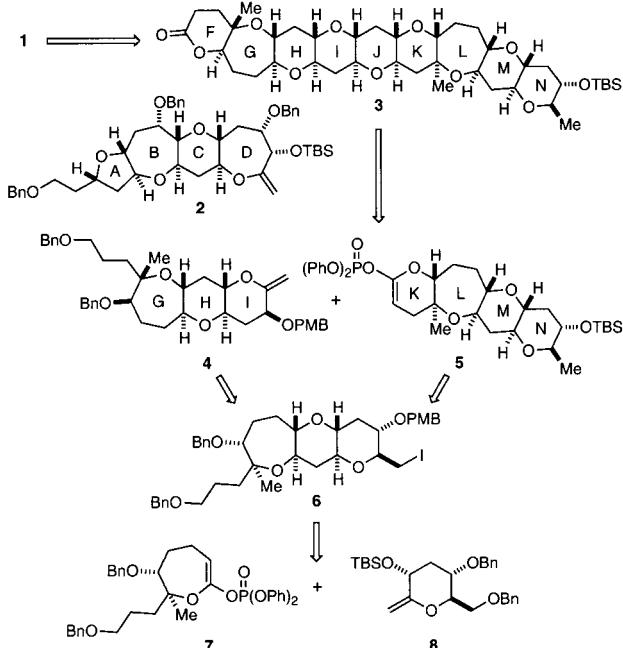


Figure 1. Structure of Gymnocin A (**1**).

[†] The University of Tokyo and CREST, JST.


[‡] Tohoku University.

(1) (a) Satake, M.; Ofuji, K.; Shoji, M.; Oshima, Y.; Yasumoto, T. *Paper Abstracts*; 2000 International Chemical Congress of Pacific Basin Societies (Pacificchem 2000), Honolulu, HI, 2000; ORGN-1780. (b) Satake, M.; Shoji, M.; Oshima, Y.; Naoki, H.; Fujita, T.; Yasumoto, T. Submitted.

(2) Analogues of **1** of yet unknown structures showed far stronger cytotoxicity than **1**; a private communication from Prof. M. Satake of Tohoku University.

Retrosynthetically, gymnocin A (**1**) can be disconnected at the E ring into the ABCD and FGHIJKLMN fragments (**2** and **3**, respectively) that could be joined via *B*-alkyl Suzuki–Miyaura coupling (Scheme 1). We envisioned that

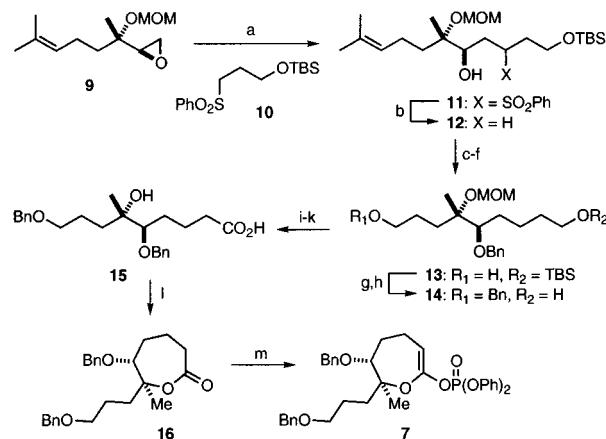
Scheme 1. Retrosynthetic Analysis of Gymnocin A (**1**)

the latter compound could be further divided into two fragments, the GHI (**4**) and KLMN (**5**) rings, both of which would be derived from a common precursor, **6**. The key intermediate **6**, in turn, could be prepared by convergent union of monocyclic units **7** and **8**.

The synthesis of enol phosphate **7** commenced with the known epoxide **9**,⁷ derived from geraniol (Scheme 2). Reaction of **9** with a lithium anion, generated from sulfone

(3) For reviews on marine polycyclic ethers, see: (a) Yasumoto, T.; Murata, M. *Chem. Rev.* **1993**, *93*, 1897–1909. (b) Murata, M.; Yasumoto, T. *Nat. Prod. Rep.* **2000**, *293*–314. (c) Yasumoto, T. *Chem. Rec.* **2001**, *3*, 228–242.

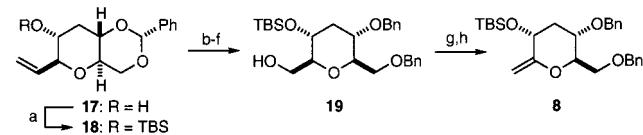
(4) (a) Sasaki, M.; Fuwa, H.; Inoue, M.; Tachibana, K. *Tetrahedron Lett.* **1998**, *39*, 9027–9030. (b) Sasaki, M.; Fuwa, H.; Ishikawa, M.; Tachibana, K. *Org. Lett.* **1999**, *1*, 1075–1077. (c) Sasaki, M.; Noguchi, K.; Fuwa, H.; Tachibana, K. *Tetrahedron Lett.* **2000**, *41*, 1425–1428. (d) Fuwa, H.; Sasaki, M.; Tachibana, K. *Tetrahedron Lett.* **2000**, *41*, 8371–8375. (e) Fuwa, H.; Sasaki, M.; Tachibana, K. *Tetrahedron* **2001**, *57*, 3019–3033. (f) Takakura, H.; Noguchi, K.; Sasaki, M.; Tachibana, K. *Angew. Chem., Int. Ed.* **2001**, *40*, 1090–1093. (g) Fuwa, H.; Sasaki, M.; Tachibana, K. *Org. Lett.* **2001**, *3*, 3549–3552.


(5) For reviews on Suzuki cross-coupling reaction, see: (a) Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, *95*, 2457–2483. (b) Suzuki, A. *J. Organomet. Chem.* **1999**, *576*, 147–168.

(6) For a recent comprehensive review on application of the *B*-alkyl Suzuki–Miyaura reaction in natural product synthesis, see: Chemler, S. R.; Trauner, D.; Danishefsky, S. J. *Angew. Chem., Int. Ed.* **2001**, *40*, 4544–4568.

(7) Epoxide **9** is available in five steps from geraniol via Sharpless asymmetric epoxidation, see: (a) Hashimoto, M.; Kan, T.; Nozaki, K.; Yanagiya, M.; Shirahama, H.; Matsumoto, T. *J. Org. Chem.* **1990**, *55*, 5088–5107. (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. *J. Am. Chem. Soc.* **1987**, *109*, 5765–5780.

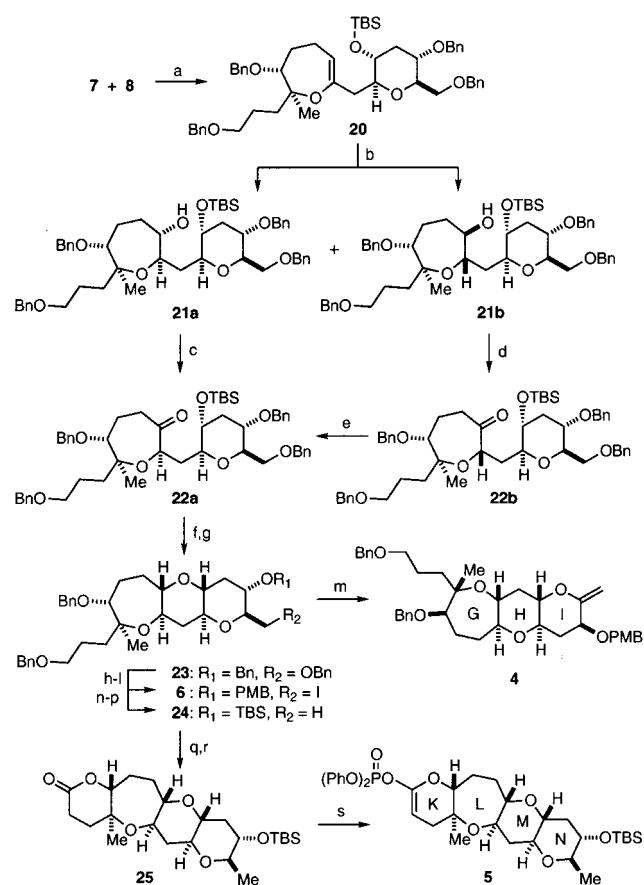
Scheme 2^a


^a Reagents and conditions: (a) **10**, *n*-BuLi, THF/HMPA, -78°C ; then **9**, 96%; (b) Na(Hg), NaH₂PO₄, MeOH, rt, 75%; (c) KO*t*-Bu, BnBr, THF, rt; (d) OsO₄, NMO, acetone/H₂O, rt; (e) NaIO₄, THF/H₂O, rt; (f) NaBH₄, MeOH, 0°C , 81% (four steps); (g) KO*t*-Bu, BnBr, THF, rt; (h) TBAF, THF, rt, 97% (two steps); (i) SO₃·pyr, Et₃N, DMSO, CH₂Cl₂, rt; (j) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, *t*-BuOH/H₂O, 0°C ; (k) TFA, CH₂Cl₂, 0°C , 62% (two steps); (l) 2,4,6-Cl₃C₆H₂COCl, Et₃N, THF, rt; then DMAP, toluene, 110°C , 62%; (m) KHMDS, (PhO)₂P(O)Cl, THF/HMPA, -78°C .

10,⁸ gave β -hydroxy sulfone **11**, which upon treatment with sodium amalgam provided alcohol **12** in 72% overall yield from **9**. After protection of the alcohol as its benzyl ether, the double bond was oxidatively cleaved and the resultant aldehyde was reduced to give **13** in 81% overall yield. Alcohol **13** was then converted to **14** in two steps. Oxidation of the primary alcohol **14** to carboxylic acid by a two-step procedure followed by removal of the methoxymethyl (MOM) group with TFA afforded hydroxy acid **15** in 62% yield (three steps). Lactonization under Yamaguchi conditions provided lactone **16**, which was readily converted to the enol phosphate **7**.

Construction of exocyclic enol ether **8** began with the known alcohol **17**,⁹ which was protected as the TBS ether **18** (Scheme 3). Routine protective and functional group manipulations allowed the conversion to primary alcohol **19**,

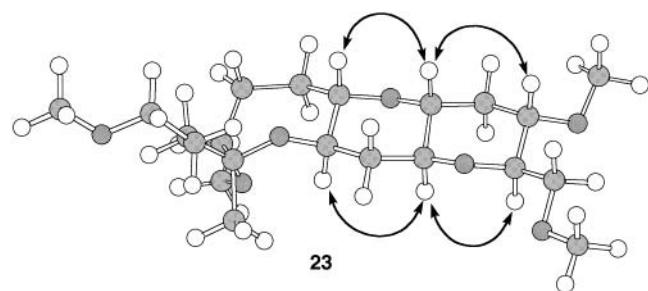
Scheme 3^a

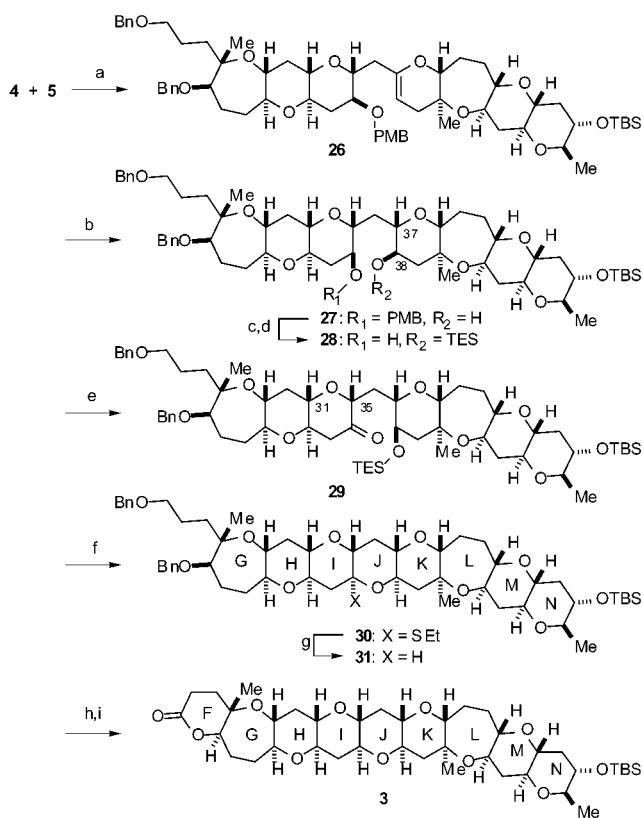


^a Reagents and conditions: (a) TBSCl, imidazole, DMF, rt, 81%; (b) Et₃S, Zn(OTf)₂, NaHCO₃, CH₂Cl₂, rt, 99%; (c) KO*t*-Bu, BnBr, THF, rt; (d) OsO₄, NMO, acetone/H₂O, rt; (e) NaIO₄, THF/H₂O, rt; (f) NaBH₄, MeOH, 0°C , 83% (four steps); (g) I₂, PPh₃, imidazole, CH₂Cl₂, rt; (h) KO*t*-Bu, THF, 0°C , quant.

which upon iodination followed by base treatment provided the desired **8**.

Hydroboration of **8** with 9-BBN-H, followed by cross-coupling with **7** under the conditions previously optimized (aqueous NaHCO₃, PdCl₂(dppf), DMF, 50 °C)^{4e} afforded the desired endocyclic enol ether **20**, but the yield was low (ca. 30%). The use of Cs₂CO₃ instead of NaHCO₃ gave a better result, and an 86% yield of **20** was obtained (Scheme 4).


Scheme 4^a



^a Reagents and conditions: (a) **8**, 9-BBN-H, THF, rt; then aqueous Cs₂CO₃, **7**, PdCl₂(dppf), DMF, 50 °C, 86%; (b) BH₃·THF, THF, rt; then aqueous NaOH, H₂O₂, rt. **21a**: 55%, **21b**: 37%; (c) TPAP, NMO, MS4 Å, CH₂Cl₂, rt, 98%; (d) TPAP, NMO, MS 4 Å, CH₂Cl₂, rt, 84%; (e) DBU, benzene, rt, 48% (+ recovered ketone, 48%); (f) p-TsOH, MeOH, rt, 84%; (g) Et₃SiH, BF₃·OEt₂, CH₂Cl₂, rt, quant; (h) H₂, Pd(OH)/C, MeOH, rt; (i) p-MeOC₆H₄CH(OMe)₂, PPTS, CH₂Cl₂, rt, 84% (two steps); (j) KOt-Bu, BnBr, THF, rt; (k) DIBALH, CH₂Cl₂, rt, 67% (two steps); (l) I₂, PPh₃, imidazole, benzene, rt, 92%; (m) KOt-Bu, THF, 0 °C, 91%; (n) n-Bu₃SnH, AIBN, toluene, 100 °C; (o) DDQ, CH₂Cl₂/phosphate buffer (pH 7), rt, 63% (two steps); (p) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 94%; (q) H₂, Pd(OH)₂/C, MeOH, rt; (r) TPAP, NMO, MS 4 Å, CH₂Cl₂, rt, 61% (two steps); (s) KHMDS, (PhO)₂P(O)Cl, THF/HMPA, -78 °C.

Subsequent hydroboration of the enol ether moiety produced a separable mixture of the desired alcohol **21a** (55%) and the corresponding diastereomer **21b** (37%). The observed

poor stereoselectivity in this reaction is presumably due to the steric hindrance of the pseudoaxial methyl group on the seven-membered ring. Oxidation of **21a** with TPAP/NMO¹⁰ provided ketone **22a** in excellent yield. On the other hand, the undesired isomer **21b** can be converted to **22a**. Thus, **21b** was oxidized with TPAP/NMO to ketone **22b**, which upon treatment with DBU in benzene provided **22a** in 48% yield (two steps) along with the recovered **22b** (48% yield). Acidic treatment of **22a** in methanol resulted in removal of the silyl group with concomitant formation of a mixed methyl ketal in 84% yield. Exposure of the resultant methyl ketal to Et₃SiH and BF₃·OEt₂¹¹ furnished tricyclic ether **23** as the sole product in quantitative yield. The stereostructure of **23** was established by NOE experiments as shown in Figure 2. Conversion of **23** into the key

Scheme 5^a

^a Reagents and conditions: (a) 4, 9-BBN-H, THF, rt; then aqueous Cs_2CO_3 , 5, $\text{Pd}(\text{PPh}_3)_4$, DMF; (b) $\text{BH}_3\cdot\text{THF}$, THF, $-20 \rightarrow 0^\circ\text{C}$; then aqueous NaOH , H_2O_2 , rt, 72% from 25; (c) TESOTf , 2,6-lutidine, CH_2Cl_2 , 0°C , 81%; (d) DDQ , CH_2Cl_2 /phosphate buffer (pH 7), rt, 90%; (e) TPAP , NMO , MS4 Å , CH_2Cl_2 , 91%; (f) EtSH , $\text{Zn}(\text{OTf})_2$, CH_2Cl_2 , rt, 87%; (g) Ph_3SnH , AIBN , toluene, 100°C , 92%; (h) H_2 , $\text{Pd}(\text{OH})_2/\text{C}$, EtOAc/MeOH , rt; (i) $\text{RuCl}_2(\text{PPh}_3)_3$, toluene, 93% (two steps).

coupled product 26 in good yield. Subsequent hydroboration provided alcohol 27 as the sole product in 72% overall yield

(three steps from 25). The stereochemistry at C37 and C38 positions¹² of 27 was confirmed by coupling constant analysis of the corresponding acetate derivative ($J_{37,38} = 9$ Hz). Silylation followed by oxidative removal of the PMB group afforded alcohol 28, which was oxidized with TPAP/NMO to afford ketone 29. At this stage, the stereochemistry at C35 was unambiguously established by NOE between H31 and H35. Treatment of ketone 29 with EtSH and $\text{Zn}(\text{OTf})_2$ afforded mixed thioketal 30 (87%), which was then reduced under radical conditions to yield octacyclic ether 31 in 92% yield. Finally, removal of the benzyl groups and oxidation of the resultant diol with $\text{RuCl}_2(\text{PPh}_3)_3$ ¹³ completed the synthesis of the target FGHIJKLMN ring fragment 3 (93% yield for two steps).

In conclusion, a convergent synthesis of the FGHIJKLMN ring fragment 3 of gymnocin A (1) has been achieved on the basis of extensive use of the *B*-alkyl Suzuki–Miyaura coupling-based methodology. The present synthesis demonstrated the usefulness and generality of our approach to a fused polycyclic ether class of marine natural products. Synthesis of the ABCD ring fragment 2 and its coupling with 3 leading to the total synthesis of 1 is currently underway and will be reported in due course.

Acknowledgment. We thank Prof. M. Satake of Tohoku University for valuable discussions. This work was financially supported in part by a grant from Suntory Institute for Bioorganic Research (SUNBOR).

Supporting Information Available: Experimental procedures and spectral data for all new compounds; ^1H and ^{13}C NMR spectra for compound 3. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL025814U

(12) The numbering of carbon atoms of all compounds in this paper corresponds to that of gymnocin A.

(13) Tomioka, H.; Takai, K.; Oshima, K.; Nozaki, H. *Tetrahedron Lett.* **1981**, 22, 1605–1608.